It is clear that the changes produced by (4) are not negligible for angular deviations of the order of a min of arc, and should be seen in experiments having the requisite angular resolution and stability. Inclusion of the 10% contributions due to (1) would enhance the 222 curves, and reduce the $\overline{2} 22$ curves, by the same factor, but without reversing the sign of the latter. Obviously, the curves in Fig. 1 , which only include σ polarization, do not account for a finite incident beam width or for possible broadening by imperfections.

Actual experiments are, of course, also influenced by contributions of order $\left(1 / \xi_{L}\right)^{2}$ to (1), and therefore also to (3), but, since these are intrinsically symmetric in φ_{T}, they superimpose a symmetric shift on the curves of Fig. 1,

Fig.1. Relative change of integrated intensity of the Ge $311 / \mathrm{L}$ interaction in a Renninger scan with azimuthal angle φ_{T}, for $\mathbf{L}=222, \overline{2} 22, \lambda=1.541 \AA . \xi_{L}$ measures the distance of \mathbf{L} from the Ewald sphere. σ polarization only.
without eliminating the asymmetry due to (4). First-order theory giving rise to (4) predominates in the far wings. Second-order terms will begin to contribute to Fig. 1 below about $\frac{1^{\prime}}{}{ }^{\prime}$, and much closer to the three-beam point the interaction becomes much more complex.
In conclusion, under the conditions where this analysis applies, the extraction of invariant phases in three-beam interactions when F_{H} is large and F_{L} is very small is not straightforward as long as the asymmetry of the modified absorption terms is not negligible. More generally, the extent to which phase-sensitive contributions control the observable asymmetry in any particular interaction may play a role in the discussion of experimental results under these conditions (e.g. Post \& Ladell, 1985).

I gratefully acknowledge the hospitality and support of RMIT and Melbourne University during my stay in Melbourne. I also appreciate having been given preliminary results of his recent experiments by Ben Post.

References

Afanas'ev, A. M. \& Perstnev, I. P. (1969). Acta Cryst. A25, 520-523.
Hildebrandt, G., Stephenson, J. D. \& Wagenfeld, H. (1973). Z. Naturforsch. Teil A, 28, 588-600.

Høier, R. \& Marthinsen, K. (1983). Acta Cryst. A39, 854-860.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Juretschke, H. J. (1982). Phys. Rev. Lett. 48, 1487-1489.
Juretschke, H. J. (1984). Acta Cryst. A40, 379-389.
Juretschke, H. J. (1986). Phys. Status Solidi. In the press.
Nicolosi, J. (1982). PhD thesis, Polytechnic Institute of New York.
Post, B. \& Ladell, J. (1985). Am. Crystallogr. Assoc. Meet., Stanford, CA, August 1985. Abstract M1.
Post, B., Nicolosi, J. \& Ladell, J. (1984). Acta Cryst. A40, 684-688.

Acta Cryst. (1986). A42, 406

Lattice complexes and limiting complexes versus orbit types and non-characteristic orbits: a comparative discussion. Erratum. By Elke Koch and Werner Fischer, Institut für Mineralogie der Universität Marburg, Hans-Meerwein-Strasse, D-3550 Marburg, Federal Republic of Germany.

(Received 28 November 1985; accepted 24 June 1986)

Abstract

In the paper by Koch \& Fischer [Acta Cryst. (1985), A41, 421-426] the words 'or more' are missing on p. 423 (left column, sixth line from bottom). The sentence should read: Then the point configurations of the intersection form

another lattice complex or, in very exceptional cases, two or more other lattice complexes (for a proof see Koch, 1974).

All information is given in the Abstract.

